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Abstract The management of hospitals within fixed-input health systems such as the U.S. Military Health System
(MHS) can be challenging due to the large number of hospitals, as well as the uncertainty in input resources and
achievable outputs. This paper introduces a stochastic multi-objective auto-optimization model (SMAOM) for
resource allocation decision-making in fixed-input health systems. The model can automatically identify where
to re-allocate system input resources at the hospital level in order to optimize overall system performance, while
considering uncertainty in the model parameters. The model is applied to 128 hospitals in the three services (Air
Force, Army, and Navy) in the MHS using hospital-level data from 2009 – 2013. The results are compared to the
traditional input-oriented variable returns-to-scale Data Envelopment Analysis (DEA) model. The application of
SMAOM to the MHS increases the expected system-wide technical efficiency by 18% over the DEA model while
also accounting for uncertainty of health system inputs and outputs. The developed method is useful for decision-
makers in the Defense Health Agency (DHA), who have a strategic level objective of integrating clinical and
business processes through better sharing of resources across the MHS and through system-wide standardization
across the services. It is also less sensitive to data outliers or sampling errors than traditional DEA methods.

Keywords Multi-objective optimization · stochastic programming · resource allocation · performance measure-
ment · productivity analysis · health systems · military medicine

1 Introduction

Healthcare systems in the United States are under increasing pressure to provide world-class healthcare that is
safe, effective, patient-centered, timely, efficient, and equitable [14]. Healthcare systems are expected to deliver
high-level care while keeping their associated healthcare costs at the same or lower level. This poses a great
challenge given the expense of new healthcare technology, specialized procedures, customizable medicine, and a
highly-skilled labor force requirements.

The U.S. Military Health System (MHS) is a global system delivering health services with medical readiness at
the center of its mission. The MHS consists of three military departments comprising the three uniformed services
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(Air Force, Army, and Navy) and the Defense Health Agency (DHA). The DHA has the strategic goal to support
the delivery of integrated, affordable, and high-quality health services to beneficiaries of the MHS. The DHA
is responsible for driving greater integration of clinical and business processes across the MHS, implementing
shared services with common measurement outcomes, enabling rapid adoption of proven practices, helping reduce
unwanted variation, and improving the coordinating of care across time and treatment venues [15].

The MHS is unique in that it recruits and trains its own medical staff, has a generally physically fit patient
population, and is a closed, single payer system. It is an integral component of our U.S. military fighting force –
ensuring a medically ready force and a ready medical force to respond to the full spectrum of military operations.
Within the integrated MHS, there are 9.5 million beneficiaries, 699 medical treatment facilities (broken into hos-
pitals, medical clinics, and dental clinics), and 380,000 medical professionals (combining military, civilian and
contractors) working in concert with the TRICARE network of providers. The MHS has an education and training
system that includes an accredited medical school, graduate programs, and enlisted and officer training platforms.
Further, it has comprehensive, cutting-edge medical research and development programs [15].

As a large, centrally-funded and controlled health system, the MHS is challenged to provide healthcare delivery
and health services at high quality with specified workload levels with a fixed amount of input resources (e.g.,
staffing, funding, etc.). Although the MHS shares some of the same challenges as large civilian US-based health
systems when it comes to delivering world-class healthcare, its unique mission comes with its own set of healthcare
challenges. At the surface, the MHS is charged with delivering quality healthcare to a diverse population. At
the core, however, that charge includes maintaining peacetime healthcare delivery capacity while ensuring the
deployment readiness of the active force. The MHS is also charged with deploying, establishing and running
forward deployed healthcare facilities. Further complicating the delivery of quality care is the transient nature of
healthcare providers either due to deployments or routine personnel moves between hospitals, clinics, and field
units. Given these challenges, MHS leaders need to understand and objectively evaluate how their hospitals and
clinics perform.

In order to optimize system performance across the MHS, the fixed-input system resources can be effectively
and efficiently allocated across the military hospital network while maintaining health system outputs. As a re-
sult, senior leaders in the DHA and other large fixed-input health systems (such as the U.S. Veterans Health
Administration) seek performance measurement methods that systematically update with these strategic and pol-
icy challenges. Moreover, there is tremendous uncertainty involved with both the input and output health system
resources, which poses yet another obstacle in meeting certain target performance levels across the system in an
efficient manner.

In response to these challenges, this paper proposes a stochastic multi-objective auto-optimization model for
resource allocation decision-making in fixed-input health systems. This performance measurement method can
help health system decision-makers automatically re-allocate input resources across hospitals for different levels
of resource uncertainty, while performing sensitivity analysis needed to optimize overall system performance.

1.1 Literature Review

The focus of performance measurement in health systems is on the relationship among inputs (such as staffing,
funding, etc.) and outputs (such as outpatient workload, quality metrics, etc.). Hollingsworth [27] and Hollingsworth
et al. [28] provided comprehensive discussions about the non-parametric and parametric methods that are used for
efficiency measurement in health care. Charnes et al. [6] proposed the use of data envelopment analysis (DEA) for
such productivity analysis. Ozcan et al. [48] evaluated trends in hospital efficiency using longitudinal data. Fulton
et al. [22] proposed regression-based military hospital cost models that included DEA efficiency scores in addition
to the variables of quality, access, and satisfaction. Nayar and Ozcan [44] provided a DEA comparison of Virginia
hospitals in terms of efficiency and quality. Ferrier and Trivitt [20] also utilized a double DEA approach in which
they controlled for quality and efficiency. Jacobs [32] compared DEA and stochastic frontier analysis (SFA) in
terms of their ability to rank efficient hospitals in United Kingdom. Overall, these methods provide performance
measurement and sensitivity analysis, but not direct decision support for senior managers in health systems.

The available decision-making methods range from goal programming to decision support systems. Eichler
et al. [18] provided an overview of the cost-effectiveness analysis for healthcare resource allocation decision-
making. The goal programming model of Kwak et al. [37] allows decision-makers to make strategic allocation
decisions with limited human resources in a health system subject to the patient satisfaction constraints. Kwak et
al. [36] used the analytic hierarchy process to identify and prioritize the goal levels within a similar multi-criteria
mathematical program. Aktas et al. [1] proposed a management-oriented decision support model which employed
a Bayesian belief network that models the causality among the key variables of system efficiency. Fulton et al.
[21] used DEA and SFA to identify the cost drivers for performance-based resource allocation, which later are
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used as part of the direct decision support methods for the MHS. Bastian et al. [3] proposed a multi-objective
auto-optimization model that is built on the sensitivity analysis of DEA models.

These aforementioned models that utilize DEA assume that inputs and outputs are deterministic. However,
the non-parametric nature of DEA relies on comparison with extreme observations. Therefore, the results can be
extremely sensitive to sampling error and errors in variables. For instance, outliers such as superefficient entities
may skew the results. Hence, a key to the success of the DEA approach is the accurate measurement of all factors,
including inputs and outputs. However, inputs and outputs can be volatile and complex to measure accurately in
certain environments. SFA-based methods consider uncertainty, primarily due to measurement errors and missing
variables, but not necessarily with respect to the decision environment. O’Donnell [45] highlighted the impor-
tance of considering uncertainty while evaluating efficiency in a stochastic decision environment. Seiford [49] and
Lovell [42] argued for remaining skepticism of the managerial and policy implications drawn from DEA unless
the uncertainty of input and output data parameters is addressed.

There is a body of work about the statistical properties of DEA estimators, for example Simar [54] and Banker
[2]. Grosskopf [25] presented a survey focusing on the statistical approaches for frontier estimation and efficiency
evaluation, whereas Cooper et al. [8] discussed sensitivity analyses of the effects occurring from data variations.
Simar and Wilson [55] discussed approaches such as bootstrapping in order to consider sampling errors. An-
other option is to use Bayesian methods to account for sampling error in DEA [56]. Kuosmanen and Post [35]
generalized the notion of economic efficiency to derive necessary and sufficient first-order stochastic dominance
efficiency conditions. Cooper et al. [13] proposed a range adjusted measure of inefficiency for use with additive
models and discussed such models and measures in DEA.

An overview of the key approaches to handling uncertainty in DEA models is provided by Dyson and Shale
[17]. DEA approaches that attempt to deal with randomness can be dated back to the use of expected values
by Sengupta [53]. Sengupta [50–52] also introduced a number of mathematical programming formulations for
stochastic DEA. The employment of chance-constrained programming formulations within stochastic DEA mod-
els has also become widespread, so that the stochastic variations in data are accommodated. Chance-constrained
DEA (CC-DEA) models incorporate random disturbances in the data in inputs and outputs given that the respective
probability distributions are known. Land et al. [38] utilized chance-constrained formulations to develop efficient
frontiers that envelop a given set of observations with a pre-determined probability.

Olesen and Petersen [47] proposed a CC-DEA model that uses piece-wise linear envelopments of confidence
regions for observed stochastic multiple inputs and outputs. Olesen [46] presented a comparison of these two
models. Cooper et al. [10] proposed the use of satisficing concepts in DEA that has a marginal chance constraint
on each decision-making unit (DMU). Cooper et al. [11] discussed stochastic characterizations of efficiency and
dominance in such DEA models. Land et al. [39] provided an empirical comparison of the productive efficiency
of a set of Western European market economies and a set of Eastern European planned economies using the CC-
DEA. Huang and Li [29] and Li [40] generalized conventional DEA models by incorporating random disturbances
into input and output data and analyzed stochastic variable returns-to-scale models using the idea of stochastic
supporting hyper-planes. Huang and Li [30] developed CC-DEA models by defining the efficiency measures via
joint probabilistic comparisons of inputs and outputs with other DMUs.

Notable stochastic DEA approaches also include Monte Carlo DEA (MC-DEA) which is based on using a
Monte Carlo simulation for the input/output values of each DMU from their statistical distribution to determine
the distribution of each DMU’s relative technical efficiency [33]. A number of fuzzy data envelopment analysis
(F-DEA) studies have also been proposed to deal with imprecision of input and output data; see the overview
of Hatami-Marbini et al. [26]. FDEA approaches can be categorized into six groups: the tolerance approach, the
α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy
random/type-2 fuzzy set [23]. When some outputs and inputs are unknown decision variables such as bounded
data, ordinal data, and ratio bounded data, the DEA model becomes a non-linear programming problem and is
called imprecise DEA (IDEA) [57]. Cooper et al. [12] and Kim et al. [34] utilized scale transformations and
variable alternations to transform it into a linear program. It should be noted that IDEA discusses imprecise data
in the context of DEA multipliers or weights, and is different from the stochastic or CC-DEA approach where
imprecise data are estimated with probabilities and the focus is on the outputs/inputs.

The use of stochastic DEA models in healthcare is relatively new. Mitropoulos et al. [43] proposed a combined
application of a CC-DEA model that is integrated with a stochastic mechanism from Bayesian techniques with
an application in the Greek health system. Jimenez et al. [33] used MC-DEA to evaluate the relative technical
efficiency of small health care areas in probabilistic terms with respect to both mental health care, as well as the
efficiency of the entire system. Lin et al. [41] utilized a multi-objective simulation optimization using DEA and
genetic algorithms to determine optimal resource levels in surgical services. An example to a F-DEA application
in health system efficiency evaluation is the fuzzy resource allocation model of Ekin et al. [19].
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1.2 Motivation and Overview

In the previous literature, the evaluation of slack and reduced costs in traditional stochastic, multi-objective math-
ematical programming approaches does not provide sufficient decision support for the re-allocation of system
resources. For large, centrally-funded and controlled health systems such as the MHS, it is critical to efficiently
and effectively re-allocate system resources since total funding and staffing is fixed. Nevertheless, decision-makers
are under pressure to sustain health system output objectives while cost and demand for health services increase.

Bastian et al. [3] proposed an optimization model linking traditional DEA and multi-objective optimiza-
tion to help the decision-maker balance competing output objectives automatically. Their multi-objective auto-
optimization model provides DHA decision-makers with the required decision support for automatic re-allocation
of input resources within a fixed-input system. In particular, the model adjusts resources automatically across all
hospitals in the system to achieve maximum system performance while achieving a minimum level of technical
efficiency for each hospital. One limitation of their approach, however, is the assumption of deterministic health
system input and output resources. This paper overcomes this limitation by extending the work to account for
uncertainty in the data parameters using stochastic programming.

This paper is structured as follows. In Section 2, we present the materials and methods, while in Section 3 we
perform a computational experiment of the proposed model. Section 4 provides concluding remarks and areas of
future work.

2 Materials and Methods

This section first reviews the basic concepts of DEA and then revisits the multi-objective auto-optimization model
(MAOM) of Bastian et al. [3], and extends it to introduce the proposed stochastic multi-objective auto-optimization
model (SMAOM). It should be noted that the MAOM is a resource allocation-based optimization model where
decision-makers can perform sensitivity analysis and re-allocate system input resources automatically within a
fixed-input health system. Whereas the SMAOM introduces stochastic programming into this model to account for
uncertainty in the data parameters. Detailed descriptions of all models are in the following subsections.

2.1 Data Envelopment Analysis (DEA)

DEA is a deterministic, non-parametric approach that uses linear programming (LP) for the assessment of effi-
ciency. In the constant returns-to-scale Charnes, Cooper, and Rhodes (CCR) DEA model [7], efficiency is defined
as a linear combination of the weighted outputs divided by a linear combination of the weighted inputs. In DEA,
assume that an organization (e.g., health system) wishes to assess the relative efficiencies of some set of com-
parable sub-units (e.g, hospitals), so called Decision Making Units (DMUs). For each DMU, there is a vector of
associated inputs and outputs of managerial interest [9]. Often, the decision-maker is interested in minimizing the
inputs without reducing any of the outputs (known as input-oriented). One may write the primal LP formulation
of the input-oriented CCR constant returns-to-scale DEA model as follows:

max θ = uT yo (1)

subject to uT yi− vT xi ≤ 0 ∀i ∈ z (2)

vT xo = 1 (3)
u≥ 0,v≥ 0 (4)

In this LP formulation, there is a vector of outputs (y), a vector of inputs (x), and z DMUs. The index o identifies
the selected DMU for which an efficiency score will be generated. This LP model optimizes efficiency, designated
as θ , by maximizing the outputs while maintaining constant inputs. The sum of the weighted outputs must be no
greater than the sum of the weighted inputs, and the sum of the weighted inputs must equal one and the sum. The
model is run z times for the total number of DMUs, once to determine the efficiency of each DMU. The vector of
input weights (v) and vector of output weights (u) are the decision variables to be determined.

In addition to the input-oriented CCR constant returns-to-scale DEA model, there is the input-oriented Banker,
Charnes, and Cooper (BCC) variable returns-to-scale DEA model [9]. The BCC DEA model minimizes the inputs
without reducing any of the outputs while assuming that the relationship between inputs and outputs involve
variable returns-to-scale. We should also consider the fact that there often exist non-discretionary inputs (e.g.,
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patient enrollment population) that cannot be adjusted in the LP model. Hence, the following is the dual LP
formulation of the input-oriented BCC variable returns-to-scale DEA model:

min θ −η(es−D + es+) (5)

subject to Y λ − s+ = yo (6)

Xλ + s−D = θxo (7)

Xλ + s−ND = xo (8)
eλ = 1 (9)

x≥ 0,y≥ 0,λ ≥ 0,s−D ≥ 0,s−ND ≥ 0,s+ ≥ 0 (10)

In this LP formulation, the inputs and input slacks are partitioned into two mutually exclusive and categorically
exhaustive sets, discretionary (D) and non-discretionary (ND). It should be noted that the non-discretionary input
slacks are not included in the objective function (5) and are not a part of the measure of efficiency evaluation that
is being obtained. Also, they are not multiplied by θ in the constraint set (8), so the non-discretionary input may
not be reduced. Further, there are m outputs, n inputs, and z DMUs, where technical efficiency is designated as θ ;
this mathematical program is run z times, once to determine the efficiency of each DMU. The index o identifies
the selected DMU for which an efficiency score will be generated, and η is a small value (also known as the
non-Archimedean element). Further, λ is the vector of dual multipliers, yo is the column vector of outputs for
DMUo, xo is the column vector of inputs for DMUo, Y and X are matrices of outputs and inputs, respectively, e is
a row vector will all elements unity, s+ is the column vector for output slack variables, and s−D and s−ND are column
vectors for the discretionary and non-discretionary input slack variables, respectively.

The objective function, equation (5), seeks to minimize the difference between the global efficiency and the
product of the non-Archimedean element times the sum of the input excesses and the output shortages. The
constraints in equation (6) ensure that the product of the dual multipliers and output data minus the dual output
slack equals to the output data for the selected DMU. The constraints given as equation (7) ensure that the product
of the dual multipliers and input data plus the dual input slack (discretionary) to equal the product of the efficiency
and input data for the selected DMU. The constraints, equation (8), ensure that the product of the dual multipliers
and input data plus the dual input slack (non-discretionary) to equal the input data for the selected DMU. The
convexity constraint, equation (9), forces the sum of the dual multipliers to equal one, which is required for a
variable returns-to-scale optimization model. Equation (10) lists the non-negativity constraints for the model.

Although these DEA formulations are useful for evaluating efficiency, their use does not provide sufficient
decision support for optimizing overall system performance when input resources are fixed. Thus, in the next
subsection, we revisit the MAOM proposed by Bastian et al. [3], which is useful for specific cases where health
system decision-makers seek to identify system inputs that might be re-allocated automatically to improve overall
system performance over multiple output objectives.

2.2 Multi-Objective Auto-Optimization Model (MAOM)

We now introduce the notation used for the sets, parameters, and decision variables of the optimization model,
which is followed by the MAOM formulation.

2.2.1 MAOM Optimization Model Sets

N – set of DMUs with i ∈ N
M – set of system output resources with j ∈M
K – set of system input resources with k ∈ K

2.2.2 MAOM Optimization Model Parameters

xki – input k for DMU i with x ∈ X
y ji – output j for DMU i with y ∈ Y
r – minimum efficiency score required for all DMUs
γ – percentage of allowable input resource change to prevent major adjustments
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2.2.3 MAOM Optimization Model Decision Variables

δki – adjustments to each input k by DMU i with δ ∈ ∆

α ji – weight for output j and DMU i with α ∈ A
λki – weight for input k and DMU i with λ ∈Λ

2.2.4 MAOM Optimization Model Formulation

max Z = ∑
i

∑
j

α jiy ji (11)

subject to r ≤∑
j

α jiy ji ∀i ∈ N (12)

∑
j

α ji=vy ji−∑
k

λki=v(xki +δki)≤ 0 ∀i,v ∈ N (13)

∑
k

λki(xki +δki) = 1 ∀i ∈ N (14)

xki +δki ≥ 0 ∀k ∈ K, i ∈ N (15)

∑
i

δki = 0 ∀k ∈ K (16)

δki ≥−γxki ∀k ∈ K, i ∈ N (17)
δki ≤ γxki ∀k ∈ K, i ∈ N (18)
0≤ r ≤ 1 (19)

α ji ≥ 0 ∀i ∈ N, j ∈M

λki ≥ 0 ∀i ∈ N,k ∈ K

δki f ree ∀i ∈ N,k ∈ K
(20)

In the MAOM formulation, the objective function in (11) seeks to maximize the sum of the efficiencies for
all of the DMUs, which are the weighted outputs. Constraints (12) restrict the weighted outputs to be greater
than or equal to the minimum efficiency score required for all DMUs. Constraints (13) require the sum of the
weighted outputs to be less than or equal to the sum of the weighted inputs for each selected DMU (i = v).
This constraint makes the problem non-linear since the input weights are multiplied by the input adjustments.
Constraints (14) guarantee the equality of the sum of the weighted and adjusted (re-allocated) inputs to one for
each DMU. Constraints (15) enforce each remaining input (after adjustment) for each DMU to be greater than
or equal to zero. Constraints (16) require that any input adjustments sum to zero. That is, resources cannot be
increased for re-allocation. Constraints (17) prevent rapid decreases of inputs, while constraints (18) prevent rapid
increases of inputs. Constraint (19) ensures that the minimum efficiency score r ∈ [0,1] for all DMUs. Finally, the
bounds for the decision variables are given in constraints (20).

The next sub-section builds upon the MAOM to construct the SMAOM.

2.3 Stochastic Multi-Objective Auto-Optimization Model (SMAOM)

The stochastic multi-objective auto-optimization model (SMAOM) uses a scenario-based Monte Carlo simulation
approach slightly modified from Bastian et al. [5]. Here, our optimization objective is a maximization problem,
whereas Bastian et al. [5] considered a minimization problem. In this approach, we approximate the expected
optimal objective value and the optimal solution of the MAOM with uncertain input and output resources:

max
x∈X

E[ f (x,ξ )]. (21)

Using longitudinal data from the organization, we fit separate probability distributions based on the panels
(multiple time periods) for each DMU, system input resource type, and system output resource type (i.e., N ∗M∗K
distributions). We then stochastically generate a scenario by simultaneous random sampling from each of the
different fitted probability distributions; this procedure equates to one Monte Carlo simulation random draw. In
other words, each scenario is stochastically generated by randomly sampling with replacement from probability
distributions for each DMU, input resource, and output resource. In order to perform Monte Carlo simulation, we
randomly generate S scenarios where each scenario corresponds to one realization of the random vector ξ . As a
result, we have S deterministic MAOM problems with the forms of:
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max
x∈X

f (x,ξs) where s = 1,2, ..,S (22)

If we let zs = maxx∈X f (x,ξs) be the optimal objective value for scenario s and xs = argmaxx∈X f (x,ξs) be the
optimal solution for scenario s, then we obtain the expected optimal objective value z̄ and the expected optimal
solution x̄, where the Monte Carlo estimates are:

z̄ =
1
S

S

∑
s=1

zs (23)

x̄ =
1
S

S

∑
s=1

xs (24)

Therefore, we solve the deterministic MAOM S times (once for each scenario) with stochastically generated
input and output resources, where the final objective value and optimal solution is the average over the scenarios
(i.e., Monte Carlo estimates). We also compute the standard deviation of the objective value and solution as
follows:

Vz =

√
1

S−1

S

∑
s=1

(zs− z̄)2 (25)

Vx =

√
1

S−1

S

∑
s=1

(xs− x̄)2 (26)

Given this basic understanding of our scenario-based Monte Carlo simulation approach for solving stochastic
programming models, we now introduce the notation used for the sets, parameters, and decision variables of the
SMAOM formulation.

2.3.1 SMAOM Optimization Model Sets

N – set of DMUs with i ∈ N
M̃ – set of stochastic system output resources with j ∈ M̃
K̃ – set of stochastic system input resources with k ∈ K̃

2.3.2 SMAOM Optimization Model Parameters

x̃ki – stochastic input k for DMU i with x̃ ∈ X̃
ỹ ji – stochastic output j for DMU i with ỹ ∈ Ỹ
ri – minimum efficiency score required for DMU i
rmin – lower bound on minimum efficiency score ri
rmax – upper bound on minimum efficiency score ri
γ – percentage of allowable input resource change to prevent major adjustments

2.3.3 SMAOM Optimization Model Decision Variables

δki – adjustments to each input k by DMU i with δ ∈ ∆

α ji – weight for output j and DMU i with α ∈ A
λki – weight for input k and DMU i with λ ∈Λ

2.3.4 SMAOM Optimization Model Formulation

For s = 1,2, ..,S:

max zs = ∑
i

∑
j

α jiỹ ji (27)

subject to ri ≤∑
j

α jiỹ ji ∀i ∈ N (28)

∑
j

α ji=vỹ ji−∑
k

λki=v(x̃ki +δki)≤ 0 ∀i,v ∈ N (29)
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∑
k

λki(x̃ki +δki) = 1 ∀i ∈ N (30)

x̃ki +δki ≥ 0 ∀k ∈ K̃, i ∈ N (31)

∑
i

δki = 0 ∀k ∈ K̃ (32)

δki ≥−γ x̃ki ∀k ∈ K̃, i ∈ N (33)

δki ≤ γ x̃ki ∀k ∈ K̃, i ∈ N (34)
rmin ≤ ri ≤ rmax ∀i ∈ N (35)

α ji ≥ 0 ∀i ∈ N, j ∈ M̃

λki ≥ 0 ∀i ∈ N,k ∈ K̃

δki f ree ∀i ∈ N,k ∈ K̃

(36)

In this SMAOM formulation, for each scenario s we let δkis = δki, α jis = α ji, and λkis = λki, and the efficiency
score of each DMU is θis = ∑ j α jiỹ ji. After solving the optimization model for each stochastically generated
scenario, we compute the expected objective function value as z̄ = 1

S ∑
S
s=1 zs, the expected adjustment to each

input k by DMU i as δ̄ki =
1
S ∑

S
s=1 δkis, the expected efficiency of each DMU i as θ̄i =

1
S ∑

S
s=1 θis, and the standard

deviation of the efficiency of each DMU i as Vθi =
√

1
S−1 ∑

S
s=1(θis− θ̄i)2.

3 Computational Experiment

This section presents a computational experiment to illustrate the application of the proposed methods. In particu-
lar, the traditional input-oriented BCC DEA model is compared to the MAOM and SMAOM for 128 hospitals (i.e.,
DMUs) from the MHS. Annual hospital-level data from 2009−2013 are used to compute the empirical mean (and
standard deviation) value for each of the inputs and outputs of interest. These averaged values of the inputs and
outputs are used for the DEA and MAOM analyses. For the SMAOM analysis, the stochastic inputs and outputs
for each DMU are simultaneously generated in each scenario s using fitted probability distributions. Note that the
data set includes measures for 33 Army hospitals, 69 Air Force clinics, and 26 Navy hospitals. Table 1 describes
the set of MHS input and output variables used for optimizing overall health system performance.

Table 1: Description of Data Sources from the MHS, 2009-2013

Variable Name Type Description of Variables
ENROLL Input Population Measure: enrollment population supported. This input is non-discretionary.

FTE Input Staffing Measure: number of available full time equivalents.
EXP Input Funding Measure: expenditures less graduate medical education and readiness costs.
RVU Output Outpatient Workload Measure: aggregated hospital relative value units.

QUAL Output Quality Measure: annual average Healthcare Effectiveness Data Information Set (HEDIS) score.

These data elements were one-time extracted from the MHS Management Analysis and Report Tool (M2),
a MHS data querying tool. Note that these specified data parameters are typical of government hospitals [48]
and are often used as variables in MHS performance measurement and evaluation studies [21,22,3,19,4]. As
shown in Table 1, the MHS input resources to be manipulated include EXP, ENROLL, and FT E, whereas the
output resources are listed as RVU and QUAL. ENROLL is assumed to be a non-discretionary input that cannot
be re-allocated, yet it still affects hospital efficiency. The output variable, RVU , is a common output measure
representing weighted outpatient workload. The QUAL variable is the percent of HEDIS measures for which an
organization was compliant in a given year. HEDIS is a set of quality performance output measures promulgated
by the National Committee for Quality Assurance, and the measures reflect outcomes (outputs).

We utilized the General Algebraic Modeling System (GAMS) [24] as the modeling language with optimization
solver CONOPT [16] for the nonlinear programming models (MAOM, SMAOM); this feasible path solver is based
on the generalized reduced gradient (GRG) algorithm. The optimization solver CPLEX [31] was used for the DEA
analysis. Both the DEA and MAOM models were solved to optimality in negligible time, while the SMAOM model
took longer time depending on the number of scenarios.
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3.1 Data Envelopment Analysis (DEA) Results

As part of the input-oriented BCC DEA analysis, technical efficiency for each of the 128 military hospitals was
computed using the average value (from 2009 – 2013) of the input and output resources. Figure 1 shows the distri-
bution of DEA efficiency scores. The mean DEA efficiency score is 0.79, with a standard deviation of 0.16. Among
the 128 military hospitals, 29 hospitals (23%) were found to be technically efficient (i.e., have an efficiency score
of 1). Note that 15 of these hospitals were Army, six were Air Force, and eight were Navy. The DEA efficiency
scores were approximately normally distributed, except for the most efficient hospital group (38 hospitals) that
achieved technical efficiency greater than equal to 0.95.

Fig. 1: Distribution of DEA Efficiency Scores

Table 2 summarizes the slack of individual input factors for those military hospitals found to be relatively
inefficient. The slack is derived from non-binding constraints for inputs: Xkoθo−∑i Xkiλi. The degree of slacks
varies depending on input types and hospitals. Overall, the slacks occurred most frequently for FT E (54/99), and
its dispersion was the largest among the three inputs (coefficient of variation=2.1). The results indicate that MHS
hospitals could reduce 2% to 30% of the current input levels without changing their efficiency performance. If
these excessive resources, especially FTEs, can be re-allocated across the military hospital network, the system
may be able to address increasing demands with lower costs. Also, the MHS hospitals that can use these additional
resources may be able to produce better performance outcomes.

Table 2: Summary of DEA Slacks for Input Variables

Min. Average Max StDev
ENROLL 0 588 10990 1465

FTE 0 20 254 40.9
EXP 0 2.3M 38.6M 6.3M

Table 3 summarizes the amount of each input that inefficient military hospitals can potentially decrease to
achieve technical efficiency. The amount of excessive inputs can be derived by Xki(1−θi). Since it was assumed
that military hospitals do not have a control over ENROLL, it was considered only for the two inputs, FT E and
EXP. The summary shows that it would be possible for a military hospital to decrease FT E by 1.6 to 1179.2 and
decrease EXP by $0.14 million to $157 million, without decreasing any of its outputs.

Table 3: Summary of DEA Excessive Inputs

Min. Average Max StDev
FTE 1.6 226.3 1179.2 252.8
EXP 0.14M 26.3M 157.3M 31.1M

The results indicate that the inefficient MHS hospitals need to reduce 1% to 57% of their current FTEs and
expenditures to achieve technical efficiency. Not all of those MHS hospitals may be able to take drastic actions in
order to achieve efficiency. However, this analysis provide a guideline for policies and priorities for an effective
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resource allocation. Automatic re-allocation of inputs may reduce this variability in inputs while increasing the
overall health system performance.

3.2 Multi-Objective Auto-Optimization Model (MAOM) Results

Even though DEA is a valuable tool to understand the hospital efficiencies and conduct manual sensitivity analyses
using the slack and reduced costs, DEA fails to provide any direct decision support for decision-makers. Therefore,
we employ the MAOM for automatic re-allocation of system inputs (FT E,EXP) across all 128 hospitals within
the MHS to maximize overall performance.

This resource allocation-based optimization model is tested with a minimum efficiency score r = 0.900 for all
hospitals. The resource changes for inputs FT E and EXP are limited from both sides to γ = 25% to prevent major
adjustments. Note that these values of r and γ were chosen based upon feedback received by the decision-makers
at the DHA; these values were also used in Bastian et al. [3] and Ekin et al. [19]. Also, side constraints are added
due to the non-discretionary nature of the input variable ENROLL (δk=ENROLL,i = 0 ∀k ∈ K, i ∈ N). As in the
DEA analysis, it should be noted that the average value (from 2009-2013) for the input and output values for each
hospital were used in the MAOM analysis.

As a consequence of the automatic system input resource re-allocations across the MHS, 81 hospitals achieved
technically efficiency (Pareto optimally) while 47 remained technically inefficient. Figure 2 shows the distribu-
tion of efficiency scores after using the MAOM for automatic resource re-allocation of staffing and funding. The
histogram shows extreme left-skew, with a mean and median hospital efficiency score of 0.96 and 1.0, respectively.

Fig. 2: Distribution of MAOM Efficiency Scores

Upon automatically re-allocating FT E and EXP input resources, there is considerable improvement over the
DEA results in terms of system-wide efficiency, as well as increases in efficiency for each hospital. This improve-
ment can be seen by comparing Figures 1 and 2, with associated efficiency averages of 0.79 and 0.96, respectively.
As indicated by this increase of mean efficiency, the resource re-allocation leads to significant performance im-
provement across the MHS.

Figure 3 shows the change in initial and final input resources for FT E and EXP for each hospital. For points
above the red/blue horizontal line, this indicates a positive resource re-allocation (i.e., increase in resources) for
that particular input and hospital. Meanwhile, points above the red/blue horizontal line suggest a negative resource
re-allocation (i.e., reduction in resources) for that particular input and hospital.

The plot suggests an interesting trend where hospitals who had a relatively large resource re-allocation for
FT E also had a relatively large resource re-allocation for EXP (e.g., hospitals H1 to H33). It appears that this
shift trend is necessary to optimize efficiency for that particular hospital and the system overall. Note that this is
not the case for every hospital, but the results do indicate a general pattern.
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Fig. 3: MAOM Resource Re-allocations for MHS Staffing and Funding

3.3 Stochastic Multi-Objective Auto-Optimization Model (SMAOM) Results

As mentioned previously, the limitation of the MAOM is that it cannot help DHA decision-makers automatically re-
allocate input resources across MHS hospitals for different levels of resource uncertainty. The proposed SMAOM
method, however, addresses this limitation by dropping the assumption of deterministic health system input and
output resources, thereby accounting for uncertainty in the data parameters. Therefore, we employ the SMAOM
for automatic re-allocation of stochastic health system inputs (FT E,EXP) to optimize overall system performance
across the 128 military hospitals within the health system.

As in the MAOM, this resource allocation-based optimization model is tested with a minimum efficiency score
ri = rmin = 0.900 for all hospitals i ∈ N and rmax = 1. Further, the resource changes for stochastic inputs FT E and
EXP are again limited from both sides to γ = 25% to prevent major adjustments, side constraints are added due
to the non-discretionary nature of the input variable ENROLL (δk=ENROLL,i = 0 ∀k ∈ K̃, i ∈ N). Upon statistical
inspection of the probability distribution for each of the inputs and outputs associated with each DMU from the
2009 – 2013 data, normal distributions provided adequate fits. Within the stochastic sampling mechanism of the
SMAOM, each scenario maps directly to a sample realization of the stochastic inputs x̃ki and outputs ỹ ji, which
are simultaneously, randomly drawn with replacement from respective normal distributions using the empirical
means and standard deviations computed from the data.

In running the SMAOM, the scenario-based Monte Carlo simulation stochastic programming solution method
uses s= 30 sample scenarios. As a consequence of the automatic system input resource re-allocations under uncer-
tainty across the MHS, 38 hospitals achieved stochastic Pareto optimally while 90 hospitals remained stochastic
inefficient. Figure 4 shows the distribution of expected hospital efficiency scores after using the SMAOM for
stochastic, automatic resource re-allocation of staffing and funding. The histogram shows extreme left-skew, with
a mean expected hospital efficiency score of 0.93 and median expected hospital efficiency score of 0.97.

To better visualize the variability of these expected hospital efficiency scores, Figure 5 displays a plot of these
expected efficiencies for each of the 128 military hospitals along with a 95% confidence interval (shown in red).

We used Figure 5 to understand better the impact of uncertainty for each MHS hospital by examining the
variability of the technical efficiency scores. In particular, this plot helped us visualize whether or not MAOM
efficiency scores were between the lower and upper bounds of the 95% confidence interval, which was useful in
comparing SMAOM with MAOM. Figure 6 shows the change in expected initial and final stochastic input resources
of FT E and EXP for each hospital.

As before, points above the red/blue horizontal line suggest a positive resource re-allocation for that particular
input and hospital, while points above the red/blue horizontal line indicate a negative resource re-allocation. The
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Fig. 4: Distribution of SMAOM Expected Efficiency Scores

Fig. 5: SMAOM Expected Efficiencies with 95% CI

plot suggests a similar trend as in the MAOM results, but there does appear to be slightly more overall variability
in the total amount of resource re-allocation for both FT E and EXP.

3.4 Comparison of DEA, MAOM and SMAOM Results

In comparing the results of the MHS hospital efficiency scores computed using the proposed methods, the his-
tograms in Figures 1, 2, and 4 suggest that the resource re-allocations performed by the MAOM led to significantly
more Pareto optimal hospitals compared to DEA. In addition, the resource re-allocations suggested by the SMAOM
also led to an improvement in overall health system performance compared to DEA. However, it should be noted
that the MAOM resulted in a greater number of Pareto optimal hospitals compared to the SMAOM.

These results are echoed in Figure 7, which illustrates the difference in efficiency score for each hospital in the
MHS. Clearly, the automatic staffing and funding adjustments made by both the MAOM and SMAOM resource
allocation-based optimization methods improved the technical efficiency of each hospital, as well as the overall
performance of the system.

We ran Pearson’s correlation for the efficiency scores generated by all three models. In all cases, the correlation
was positive and moderate to strong, indicating convergent validity of the three methods. The weakest correlation
(0.674) was between DEA and MAOM. Since SMAOM is a stochastic variant of MAOM, we were not surprised
to find the high correlation (0.909) between the two models. In addition, we performed additional runs of the
SMAOM with the number of sample scenarios s = 50,100,150,200. We found that the correlation between the
MAOM efficiency scores and expected SMAOM efficiency scores improved as the value of s increased. This
occurred because as the sample size increased, there was a reduction in the standard error of the expected stochastic
efficiencies. Table 4 shows the result of the Pearson’s correlation analysis.
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Fig. 6: SMAOM Expected Resource Re-allocations for MHS Staffing and Funding

Fig. 7: Comparison of DEA, MAOM and SMAOM Efficiency by Military Hospital

Table 4: Pearson’s Correlation Among the Efficiency Scores for the Models

DEA MAOM SMAOM
DEA 1 .674* .752*

MAOM 1 .909*
SMAOM 1

*p < .001

To confirm the convergent validity between the MAOM and SMAOM, we also wanted to understand better
the differences between the MAOM and SMAOM efficiency scores. Figure 8 provides a histogram of the absolute
differences between MAOM and SMAOM efficiency scores. This extremely right-skewed density confirms the
convergent validity as illustrated by the relatively minor differences between the efficiencies. Figure 9 shows
two scatterplots of the differences between MAOM and SMAOM efficiency scores against measures of hospital
size. Regarding hospital size, the left sub-figure shows the average hospital enrollment population, while the right
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sub-figure shows the average hospital outpatient workload. Both sub-figures show a similar pattern regarding the
relationship between the MAOM/SMAOM technical efficiency score differences and hospital size, and both sub-
figures have a similar right-skew to that shown in Figure 8. These results suggest that smaller-sized hospitals have
slightly greater absolute differences of MAOM and SMAOM efficiency scores compared to larger-sized hospitals.

Fig. 8: Histogram of Differences between MAOM and SMAOM Efficiency Scores

Fig. 9: Scatterplots of Differences between MAOM and SMAOM Efficiencies Against Hospital Size

We also evaluated the directional congruence of the recommended changes of MAOM versus those produced
by SMAOM for both expenditures and full-time equivalents. The congruence for expenditures was 80.47%, indi-
cating that nearly 81% of all recommendations were identical in direction. Using a two-tailed sign test with a null
assumption of a 50% match, we found that the Binomial probability of having 103 successes in 128 trials under
the null was less than 0.001. The directional match of staffing changes was 79.7%, and the two-tailed binomial
probability was less than 0.001. So the models produce very similar results when looking at both EXP and FTE
changes in terms of directionality.

Given that we performed cross-sectional analysis on averaged values of inputs and outputs for the DEA and
MAOM analyses, we also wanted to compare these results to the efficiency scores generated for each year (2009
– 2013) and each of the 128 military hospitals. This year-by-year comparison with the averaged results, along
with the expected efficiency and 95% confidence interval lower (LB) and upper bounds (UB) computed from the
SMAOM analysis, is shown in Table 5. We found that nearly 60% of the MAOM efficiency scores fell strictly
within the lower and upper bounds of the 95% confidence interval computed from the SMAOM results. Note,
however, that those efficiency scores falling outside of this confidence interval did so trivially.

For the DEA results in Table 5, there is no statistically significant difference between the mean efficiency score
(over the five years) and the averaged efficiency score for each of the military hospitals (p-value = 0.28). For the
MAOM results in Table 5, we again found no statistically significant difference between the mean efficiency score
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Table 5: Year-by-year Comparison of DEA, MAOM and SMAOM Analyses

DEA MAOM SMAOM
DMU 2009 2010 2011 2012 2013 Mean Averaged 2009 2010 2011 2012 2013 Mean Averaged Mean LB UB

H1 0.57 0.66 0.52 0.58 0.69 0.60 0.60 0.66 0.91 0.70 0.83 1.00 0.82 0.83 0.83 0.79 0.87
H2 0.73 0.76 0.73 0.92 1.00 0.83 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H3 0.65 0.66 0.58 0.59 0.64 0.62 0.63 0.75 0.91 0.73 0.85 0.88 0.82 0.83 0.77 0.74 0.80
H4 1.00 0.85 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 1.00
H5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H6 0.80 0.61 0.66 0.71 0.81 0.72 0.71 1.00 0.79 0.86 1.00 0.99 0.93 0.92 0.95 0.93 0.97
H7 0.97 0.95 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H8 0.87 1.00 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H9 0.87 0.88 0.75 0.84 0.73 0.81 0.83 1.00 1.00 0.96 1.00 0.95 0.98 1.00 0.99 0.98 1.00
H10 0.96 1.00 0.93 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H11 1.00 0.89 0.86 0.64 0.68 0.81 0.76 1.00 1.00 1.00 0.93 1.00 0.99 1.00 0.97 0.94 1.00
H12 0.86 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H13 0.83 0.97 0.81 0.86 0.85 0.86 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H14 0.76 0.87 0.76 0.71 0.69 0.76 0.77 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
H15 0.87 0.90 0.90 1.00 0.94 0.92 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H16 0.59 0.64 0.55 0.57 0.52 0.57 0.58 0.73 0.91 0.78 0.76 0.64 0.76 0.81 0.77 0.73 0.81
H17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H18 0.78 0.68 0.79 0.96 0.90 0.82 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H19 0.89 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H20 0.70 0.73 0.67 0.71 0.74 0.71 0.73 0.87 0.86 0.82 0.88 0.98 0.88 0.92 0.92 0.89 0.95
H21 0.79 0.94 0.92 0.99 0.98 0.92 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H22 0.96 0.91 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H24 0.97 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H25 1.00 1.00 0.83 0.78 0.85 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H26 0.84 0.93 0.84 0.89 0.91 0.88 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.01
H27 0.77 0.82 0.75 1.00 1.00 0.87 0.81 0.92 1.00 0.99 1.00 0.99 0.98 1.00 0.98 0.97 0.99
H28 0.82 0.95 1.00 0.84 0.89 0.90 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H29 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H30 0.68 0.60 0.57 0.67 0.57 0.62 0.61 0.73 0.77 0.84 1.00 0.73 0.81 0.84 0.78 0.74 0.82
H31 0.54 0.59 0.67 0.78 0.82 0.68 0.69 0.73 0.80 0.97 1.00 1.00 0.90 1.00 0.97 0.96 0.98
H32 0.79 0.76 0.84 0.91 0.82 0.82 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H33 1.00 0.98 1.00 1.00 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H34 0.75 0.82 0.82 0.70 0.74 0.77 0.80 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H35 0.73 0.93 0.87 0.92 0.98 0.89 0.87 0.85 1.00 1.00 1.00 1.00 0.97 1.00 0.97 0.95 0.99
H36 0.87 0.76 0.81 0.83 0.94 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H37 0.94 1.00 0.97 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H38 0.55 0.54 0.52 0.50 0.48 0.52 0.53 0.73 0.77 0.84 0.72 0.65 0.74 0.79 0.64 0.60 0.68
H39 0.72 0.67 0.68 0.70 0.63 0.68 0.69 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.90 0.98
H40 0.54 0.61 0.63 0.64 0.70 0.62 0.64 0.76 0.95 1.00 1.00 1.00 0.94 1.00 0.87 0.83 0.91
H41 0.62 0.72 0.75 0.76 0.71 0.71 0.74 0.96 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.96 1.00
H42 0.79 0.78 0.81 0.86 0.84 0.82 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 1.00
H43 0.65 0.70 0.75 0.83 0.70 0.73 0.72 0.93 1.00 1.00 1.00 1.00 0.99 1.00 0.97 0.95 0.99
H44 0.87 0.81 0.87 0.86 0.80 0.84 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.92 0.98
H45 0.56 0.53 0.53 0.63 0.62 0.57 0.59 0.68 0.67 0.50 0.77 0.75 0.67 0.72 0.62 0.59 0.65
H46 0.83 0.84 0.87 0.85 0.82 0.84 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.95 1.01
H47 0.85 0.96 0.99 1.00 0.88 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H48 0.58 0.59 0.56 0.68 0.53 0.59 0.57 0.68 0.71 0.82 0.91 0.75 0.77 0.84 0.78 0.74 0.82
H49 0.69 0.71 0.61 0.69 0.87 0.71 0.79 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.97 0.95 0.99
H50 0.85 0.81 0.92 0.83 0.85 0.85 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.99
H51 0.86 0.88 0.91 0.90 0.79 0.87 0.89 1.00 1.00 1.00 1.00 0.97 0.99 1.00 0.99 0.98 1.00
H52 0.60 0.68 0.71 0.74 0.73 0.69 0.70 0.81 1.00 1.00 1.00 1.00 0.96 1.00 0.94 0.91 0.97
H53 0.94 0.84 0.86 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H54 0.58 0.63 0.56 0.61 0.53 0.58 0.58 0.72 0.96 0.87 0.90 0.60 0.81 0.87 0.77 0.73 0.81
H55 0.58 0.69 0.66 0.70 0.65 0.66 0.67 0.82 1.00 1.00 1.00 0.93 0.95 1.00 0.88 0.84 0.92
H56 0.81 0.80 0.86 0.78 0.72 0.79 0.81 1.00 1.00 1.00 0.94 0.73 0.93 1.00 0.86 0.80 0.92
H57 1.00 1.00 0.59 0.55 0.56 0.74 0.81 0.98 0.95 0.93 0.73 0.65 0.85 0.90 0.81 0.76 0.86
H58 0.61 0.63 0.66 0.73 0.65 0.66 0.65 0.96 0.95 1.00 1.00 0.99 0.98 0.94 0.94 0.91 0.97
H59 0.71 0.66 0.60 0.65 0.65 0.65 0.68 0.91 0.79 0.64 0.66 0.61 0.72 0.71 0.69 0.64 0.74
H60 0.82 0.82 0.80 0.81 0.75 0.80 0.81 0.87 0.94 1.00 1.00 1.00 0.96 1.00 0.96 0.92 1.00
H61 0.73 0.82 0.77 0.75 0.68 0.75 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.91 0.97
H62 0.65 0.81 0.74 0.80 0.74 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.94 1.00
H63 0.67 0.69 0.72 0.78 0.76 0.72 0.74 0.91 1.00 1.00 1.00 1.00 0.98 1.00 0.89 0.85 0.93
H64 0.54 0.70 0.73 0.85 1.00 0.76 0.77 0.72 1.00 1.00 1.00 1.00 0.94 1.00 0.96 0.93 0.99
H65 0.95 1.00 0.92 0.93 1.00 0.96 0.99 0.75 1.00 1.00 1.00 1.00 0.95 1.00 0.96 0.92 1.00
H66 0.63 0.63 0.58 0.61 0.57 0.60 0.61 0.82 0.92 0.86 0.71 0.79 0.82 0.92 0.82 0.79 0.85
H67 0.78 0.72 0.82 0.83 0.74 0.78 0.80 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.96 0.94 0.98
H68 0.69 0.68 0.73 0.75 0.71 0.71 0.74 1.00 0.97 1.00 1.00 0.87 0.97 1.00 0.81 0.76 0.86
H69 0.76 0.70 0.80 0.81 0.77 0.77 0.78 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.93 0.99
H70 0.59 0.67 0.60 0.72 0.56 0.63 0.61 0.79 0.88 0.83 0.98 0.82 0.86 0.92 0.79 0.76 0.82
H71 0.62 0.68 0.64 0.59 0.54 0.61 0.62 0.74 0.86 0.98 0.84 0.68 0.82 0.85 0.78 0.72 0.84
H72 0.62 0.63 0.61 0.67 0.62 0.63 0.64 0.96 1.00 1.00 1.00 0.99 0.99 0.97 0.94 0.92 0.96
H73 0.62 0.66 0.69 0.73 0.73 0.69 0.67 0.96 1.00 1.00 0.99 1.00 0.99 1.00 0.97 0.95 0.99
H74 0.66 0.61 0.63 0.57 0.61 0.62 0.62 0.98 0.76 0.94 0.92 0.91 0.90 0.95 0.85 0.81 0.89
H75 1.00 0.82 0.74 0.75 0.77 0.82 0.78 1.00 1.00 0.86 0.76 0.78 0.88 0.90 0.91 0.88 0.94
H76 0.83 0.84 0.92 0.86 0.83 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H77 0.58 0.48 0.43 0.45 0.47 0.48 0.49 0.84 0.67 0.57 0.62 0.60 0.66 0.68 0.68 0.65 0.71
H78 0.99 1.00 1.00 0.98 0.78 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01
H79 0.82 0.81 0.82 0.86 0.78 0.82 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.92 0.98
H80 0.67 0.64 0.58 0.60 0.61 0.62 0.63 0.99 0.98 0.79 0.82 0.97 0.91 0.99 0.93 0.90 0.96
H81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H82 0.92 0.96 0.86 0.88 0.91 0.91 0.93 0.89 1.00 1.00 1.00 1.00 0.98 1.00 0.96 0.93 0.99
H83 0.98 0.70 0.56 0.59 0.63 0.69 0.66 1.00 1.00 0.83 0.86 0.99 0.94 1.00 0.93 0.90 0.96
H84 0.59 0.64 0.75 0.73 0.75 0.69 0.71 0.95 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.98 1.00
H85 1.00 1.00 0.92 1.00 0.91 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H86 0.64 0.69 0.69 0.71 0.70 0.69 0.68 0.98 0.99 1.00 0.99 0.96 0.98 0.98 0.95 0.92 0.98
H87 0.61 0.78 0.77 0.80 0.81 0.75 0.77 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
H88 0.49 0.57 0.54 0.58 0.54 0.54 0.55 0.63 0.69 0.69 0.81 0.79 0.72 0.75 0.81 0.76 0.86
H89 0.60 0.61 0.64 0.67 0.58 0.62 0.64 0.86 1.00 1.00 1.00 0.92 0.96 1.00 0.91 0.87 0.95
H90 0.62 0.65 0.70 0.73 0.65 0.67 0.67 0.77 0.93 1.00 1.00 1.00 0.94 0.97 0.89 0.85 0.93
H91 0.52 0.49 0.51 0.55 0.57 0.53 0.55 0.64 0.67 0.73 0.81 0.85 0.74 0.78 0.75 0.71 0.79
H92 0.75 0.73 0.67 0.71 0.72 0.72 0.71 0.97 0.97 1.00 0.89 0.98 0.96 0.95 0.93 0.90 0.96
H93 0.54 0.42 0.42 0.43 0.37 0.44 0.43 0.75 0.59 0.64 0.61 0.48 0.61 0.54 0.53 0.49 0.57
H94 0.68 0.67 0.67 0.74 0.76 0.70 0.71 0.93 1.00 1.00 1.00 0.98 0.98 0.98 0.92 0.89 0.95
H95 0.55 0.55 0.49 0.54 0.55 0.54 0.62 0.84 0.78 0.77 0.85 0.89 0.83 0.86 0.84 0.81 0.87
H96 0.90 0.92 0.80 0.77 0.74 0.83 0.80 1.00 0.86 0.80 0.99 0.72 0.87 0.96 0.85 0.80 0.90
H97 0.82 0.92 0.87 0.81 0.76 0.84 0.86 1.00 1.00 1.00 1.00 0.84 0.97 1.00 0.93 0.89 0.97
H98 0.58 0.69 0.70 0.70 0.72 0.68 0.69 0.58 0.79 0.79 0.93 0.76 0.77 0.80 0.70 0.65 0.75
H99 0.57 0.56 0.57 0.58 0.53 0.56 0.58 0.80 0.79 0.89 0.84 0.85 0.83 0.86 0.85 0.82 0.88

H100 1.00 1.00 1.00 1.00 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H101 0.62 0.54 0.53 0.59 0.65 0.59 0.59 0.93 0.82 0.78 0.89 1.00 0.88 0.89 0.90 0.87 0.93
H102 0.72 0.74 0.65 0.65 0.56 0.66 0.79 1.00 1.00 1.00 1.00 0.87 0.97 0.98 0.90 0.86 0.94
H103 0.73 0.78 0.66 0.64 0.62 0.69 0.71 1.00 1.00 0.95 0.99 0.96 0.98 1.00 1.00 1.00 1.00
H104 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H105 0.78 0.70 0.69 0.64 0.62 0.69 0.70 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H106 0.89 0.96 0.80 0.91 0.95 0.90 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H107 0.93 0.85 0.85 0.84 0.90 0.87 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H108 0.64 0.59 0.54 0.58 0.53 0.58 0.59 0.75 0.82 0.79 0.81 0.70 0.77 0.81 0.77 0.75 0.79
H109 1.00 1.00 1.00 1.00 0.70 0.94 1.00 0.85 1.00 1.00 0.93 0.51 0.86 0.98 0.91 0.86 0.96
H110 0.73 0.76 0.74 0.73 0.70 0.73 0.74 1.00 1.00 1.00 0.97 0.97 0.99 0.99 0.99 0.98 1.00
H111 0.71 0.74 0.67 0.70 0.69 0.70 0.72 0.97 1.00 0.87 0.94 0.97 0.95 1.00 0.96 0.94 0.98
H112 0.63 0.62 0.62 0.69 0.64 0.64 0.64 0.75 0.69 0.81 0.82 0.67 0.75 0.81 0.79 0.74 0.84
H113 0.93 0.94 0.84 0.90 0.84 0.89 0.89 0.99 0.98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
H114 1.00 0.98 0.86 0.92 0.89 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H115 0.66 0.67 0.62 0.67 0.79 0.68 0.68 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H116 1.00 0.85 0.88 1.00 1.00 0.95 1.00 0.95 0.94 0.98 1.00 0.97 0.97 1.00 0.95 0.92 0.98
H117 0.58 0.59 0.59 0.60 0.61 0.59 0.61 0.63 0.71 0.74 0.79 0.85 0.74 0.81 0.77 0.74 0.80
H118 0.76 0.69 0.71 0.73 0.73 0.72 0.73 0.93 1.00 1.00 1.00 0.99 0.98 1.00 0.96 0.94 0.98
H119 0.67 0.62 0.57 0.60 0.54 0.60 0.61 0.92 0.77 0.62 0.78 0.79 0.78 0.81 0.82 0.79 0.85
H120 1.00 1.00 0.98 0.92 0.98 0.98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H121 0.70 0.76 0.96 0.90 0.77 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.01
H122 0.89 0.94 0.87 0.95 0.98 0.93 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H123 0.64 0.66 0.55 0.57 0.56 0.60 0.61 0.84 0.83 0.82 0.83 0.80 0.82 0.86 0.78 0.74 0.82
H124 1.00 1.00 1.00 0.92 0.84 0.95 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
H125 0.90 0.98 0.92 0.76 0.76 0.86 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00
H126 1.00 0.85 0.82 0.85 0.75 0.85 0.86 0.97 1.00 1.00 1.00 0.98 0.99 1.00 0.99 0.98 1.00
H127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H128 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01
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(over the five years) and the averaged efficiency score for each of the military hospitals (p-value = 0.12). Note that
visual inspection of Figure 10 confirms the trivial differences between mean of the year-by-year efficiency scores
and the averaged efficiency scores for both the DEA and MAOM analyses.

Fig. 10: Comparison of Year-by-year and Averaged DEA and MAOM Efficiency Scores

4 Concluding Remarks

This paper introduced the Stochastic Multi-Objective Auto-Optimization Model for resource allocation decision-
making in fixed-input health systems under uncertainty. The efficient allocation of resources for health systems is
paramount due to the expectation to deliver top-notch health care in the face of rising costs. The proposed model
accommodates uncertainty in health system parameters and automatically allocates resources in order to maximize
the system-wide performance of a fixed-input health system.

The SMAOM, MAOM and classic DEA models were compared to illustrate how the automatic allocation of
system input resources can readily improve technical efficiency scores of hospitals in a fixed-input health system.
Annual hospital level data from 2009 – 2013 for 128 MHS hospitals were used to run a computational experiment.
Results of the experiment highlight an expected system-wide increase of 18% technical efficiency via the SMAOM.
The results also indicated that nearly all of the MAOM efficiency scores fell within (or extremely near) the 95%
confidence interval produced by the SMAOM, suggesting that adding stochasticity to the MAOM makes the results
less sensitive to outlier DMUs, which straight DEA and MAOM methods are subject to.

The primary motivation of this research was to support the strategic-level objective of the DHA to drive greater
integration of clinical and business processes across the MHS by implementing shared services with common mea-
surement outcomes and exercising management responsibility for joint shared services [15]. The SMAOM prof-
fered in this research was designed specifically to support DHA managers in optimizing system-wide performance
by sharing input resources amongst the three medical services (Army, Navy, Air Force) in an integrative fashion.
As a result, the SMAOM directly supports DHA management and policy-makers in helping determine effective
and efficient options for sharing MHS input resources such that all three medical services are held responsible for
shared health service support.

The SMAOM helps achieve full operating capability for integrated MHS health services to improve MHS-wide
standardization, efficiency, and jointness. It plays a critical role in facilitating business planning and performance
management for the enhanced Multi-Service Markets (eMSMs) around the country. Within each eMSM, an ap-
pointed market manager has the authority to: 1) manage the allocation of the budget for the market; 2) direct
common clinical and business functions for the market; 3) optimize readiness to deploy medically-ready forces;
4) direct the workload and workforce among market medical treatment facilities; and 5) develop, execute and
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monitor the business performance plan [15]. Given these responsibilities of the market manager, the SMAOM is
extremely valuable for direct support of performance planning and execution in that it provides recommendations
for the efficient and effective allocation of funding and staffing in a way that optimizes the overall performance.

The SMAOM developed in this research has significant managerial implications for senior DHA leaders and
MHS decision-makers in that it is useful as decision support to: 1) promote more effective and efficient healthcare
operations through enhanced enterprise-wide shared services; 2) match personnel, infrastructure, and funding
to current missions, future missions, and population demand; and 3) create enhanced value in military medical
markets using an integrated approach in short-term business plans. Hence, the results of this work help develop,
shape and empower strategically informed leaders, which is imperative to the success of the MHS.

One limitation of the proposed model is the non-linearity of the SMAOM model. We acknowledge that the
SMAOM would not be the best approach for a ”real-time” decision support tool. However, the planning horizon
for large fixed-input health systems, i.e. yearly budgets and planned allocations, indicates the maximum solution
time of approximately 30 minutes is acceptable for this problem. Another limitation of this model is that decision-
makers responsible for the fixed-input health system must be technically proficient to set up and solve the model.

Future work will explore more dynamic models to accommodate scenarios in which health system inputs
vary over time. For example, a small mobile field hospital may be re-located frequently to natural disaster sites
and demand different system resources for each disaster. Future work will also identify other non-health system
applications to apply the SMAOM. Public resources, such as fire stations, police stations and schools, are also in
need of the efficient allocation of resources and have uncertain system parameters.
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